

Illustrated FERNS and LYCOPHYTES

of the Chicago Region
March 2021
Kathleen Garness \& Gerould Wilhelm
Conservation Research Institute
P. O. Box 1848

Sandpoint, Idaho 83864

Abstract

The identification of ferns can be a frustrating task, even with the aid of the few illustrated reference floras, some listed below, that include the Chicago Region within their scope. The Chicago Region here includes the 22 counties detailed in Wilhelm \& Rericha (2017), which is the source for the key to the genera included here. Indeed, we recommend that they be used along with this treatment, with the understanding that there will be nomenclatural and taxonomic differences among reference materials. One can always go online, but caution is recommended, since online illustrations and photographs may not represent consistent thinking with regard to taxonomy. Nor can one be sure that the image presented is a good or even accurate representation of the species.

One might imagine that photographs would represent a species most accurately, but due to the vagaries of focal plane, choice of subject, and several other factors, individual photographs may not provide the student with a succinct impression. Line illustrations, for the purposes of species identification, can emphasize the singular features of a species insofar as it compares to related species. We have made every effort to do so here. It is our hope that this presentation of local ferns and other vascular cryptogams will enable anyone with a hand lens and an interest in the flora to become acquainted with this lovely but challenging group of ancient plants.
Few efforts of quality are achieved in isolation. Fern expert Robbin Moran, Curator Emeritus, New York Botanical Garden, provided very helpful comments on the illustrations of ferns and lycophytes, and on the accompanying text. We are grateful to Bill N. McKnight, special publications editor of the Indiana Academy of Science, for his ongoing support and guidance on clubmosses. The senior author would also like to express her gratitude to Jack Shouba, who taught her the joy of learning trees in all seasons in his Morton Arboretum classes, with the help of a good dichotomous key, and whose careful eye made sure there were no omissions in this manuscript. Last but not least, her son Ian James Halliday, who, with his family, Katy, Liam and Ellie, always have given steadfast encouragement in her artistic efforts (and frequent IT help too).

Recommended Illustrated References

Billington, C. 1952. Ferns of Michigan. Bloomfield Hills: Cranbrook Institute of Science
Mohlenbrock, R. H. 1967. The illustrated flora of Illinois: Ferns. Carbondale: Southern Illinois University.
Moran, R. C. 2004. A natural history of ferns. Portland, Oregon: Timber Press.
Palmer, D. D. 2018. Michigan ferns and lycophytes: a guide to species of the Great Lakes region. Ann Arbor: University of Michigan.

Wilhelm, G. and L. Rericha. 2017. Flora of the Chicago region: a floristic and ecological synthesis. Indianapolis: Indiana Academy of Science.

Ferns and Lycophytes

Silvery
Spleenwort pinnule with sori

Silvery Spleenwort (Deparia acrostichoides) has a very hairy stipe and 'eyebrow-shaped' (some say 'taco-shaped!') sori. Rare, it might be found in ravines, rich mesic woodlands. Much of its habitat has been destroyed. $\mathrm{C}=10$
 are much narrower than the pinnae of sterile ones. $\mathrm{C}=10$

Narrowleaved Spleenwort pinnule with sori

Nin
Sensitive Fern (Onoclea sensibilis)
is most common in wetter areas
 flatwoods. Notice the bead-like appearance of the fertile frond, which will remain long after the sterile frond has disappeared. It is also distinctive for its netted veins. The common name refers to the rapid discoloration of the frond at the first frost. See also comments on Netted Chain Fern, plate 5. $\mathrm{C}=5$

Lady Fern pinnule
with sori
Lady Fern
(Athyrium filix-femina)
is probably the most common fern in our woodlands. It grows in small vase-shaped clusters. Sori resemble eyebrows, and can be straight or with a slight arch. $\mathrm{C}=8$
of the Chicago Region

Male Fern
(Dryopteris filix-mas) has a short stipe that is very scaly at its base. It has two kinds of scales: broad and hairlike. The kidney-shaped sori are in the middle of the pinnule, along the veins. The blade is widest in the middle with a longtapered tip. In this region it is confined to a single ravine slope near Lake Michigan. $\mathrm{C}=10$

Spinulose Shield Fern (Dryopteris carthusiana) has a very scaly stipe, kidney-shaped sori, and no glands on the indusia. The lowermost segment of each pinnule is longer than the one above it. $\mathrm{C}=8$
note longer lowermost pinnule closest to the rachis Spinulose Shield Fern with sori.

Marginal
Shield Fern Shield Fern (Dryopteris marginals) has sori on toothless margins. There are scales but no hairs on the stipe (frond stalk). The veins do not reach the edge of the blade. It is confined to rich mesic woods. $\mathrm{C}=10$
shorter lowermost pinnule closest to the rachis

Florist's Wood Fern with sori

Sori on Florist's Wood Fern (Dryopteris intermedia) are round or kidney-shaped. Its indusia and rachis have visible capitate glands but you need a hand lens to see them. The best field character to tell this one from Spinulose Shield Fern is that in Florist's Wood Fern, the lowermost segment of each pinnule is shorter than or equal to the one above it whereas in Spinulose Shield Fern, it is longer. $\mathrm{C}=9$

Ferns and Lycophytes
of the Chicago Region
The ferns on this page mostly have rounded tips on the pinnules and a smooth, not scaly, stipe.

The shape and arrangement of fronds, sori, pinnule tips, and venation help identify ferns to species, so look closely at those.
\qquad

Broad Beech Fern (Phegopteris hexagonoptera)

 is a rare species of rich mesic woodlands. Notice how it almost looks like an equilateral triangle. The winged rachis is very distinctive to this species. $\mathrm{C}=10$

Interrupted Fern pinna

Bracken Fern (Pteridium aquilinum var. latiusculum)

 has many varieties and is the most widelydistributed fern on the Earth. Our regional variety, latiusculum, prefers upland woods and is often seen in sandy soil. It forms large colonies by way of coarse, hairy rhizomes. Glands at the top of the petiole and the base of the pinnae contain sugars that attract territorial ants. The glands at the pinna bases (lower side) often appear as dark spots, especially after they have stopped producing nectar. The blade is held high and almost parallel to the ground. $\mathrm{C}=5$dryopteris), which also has a triangular aspect but no winged rachis, is only noted from one 1880 Racine Co. WI collection). $\mathrm{C}=10$

There is one Jasper Co. Indiana record for the more southern variety, pseudocaudatum.

Glands and hair tufts (respectively) are located on the abaxial (lower) surface of the leaves so look closely for those too.

Note the separate sterile and fertile fronds on Ostrich Fern．

Royal Fern
（Osmunda spectabilis）
is found in bogs and wet sand prairies． The fertile pinnae are at the top of the frond．Its Latin name Latin name
＇spectabilis＇ ＇spectabilis＇ means
showy． $\forall \begin{gathered}\text { showy．} \\ \mathrm{C}=8\end{gathered}$
of the Chicago Region other ferns in this guide，all the ferns on this page tend to grow in large colonies．（Bracken Fern and Sensitive Fern are two other colonizers．）

Tennessee Fragile Fern (Cystopteris tennesseensis) has minute stipitate glands that you will need a good magnifier to see. The scalelike indusium is attached on one side of the vein, which is characteristic of Cystopteris. Sometimes it forms small scaly bulblets along the rachis where it is joined by the pinnae. Compared to C. bulbifera, the bulbets are much smaller and scalier. Even small fronds tend to have sori! $\mathrm{C}=10$

Cliff Fern

(Woodsia obtusa) The presence of scales on the laminae and the form of the indusium are the best characters to distinguish it from Cystopteris. The frond is broadest near the middle. The tips of the pinnae and pinnules are blunt. The indusia split to form star-like membranes. It is rare on wooded rocky cliffs in our region. $\mathrm{C}=10$

The species in this top row will only be found on rocky outcrops in canyons in our region. The species in the bottom row are occasionally also found in rocky woodlands.

Slender Fragile Fern

(Cystopteris tenuis) has dark brown shading on its stipe that reaches well above the middle. Notice how the pinnae arch upwards. The pinnules are wedge-shaped at the base and often blunt at the tips. They are also more ascending than the others. Look for it in moist limestone-rich woodlands and rocky ravines. $\mathrm{C}=10$

Fragile Fern (Cystopteris fragilis)

Look for the dark stipe and pinnae that are perpendicular to it, and don't curve upward. Its pinnules have sharp 'teeth' whereas the others do not. $\mathrm{C}=10$

Bladder Fern has at least 16 pairs of pinnae. All the others have fewer.

pinna showing bulblet along costa

Bladder Fern (Cystopteris bulbifera) gets its name from the tiny bulblets borne on the underside of some of the pinnae. These bulblets fall off and develop into new plants that are clones of their parent.
Newly emerging fronds have bright red
(Cystopteris protrusa), like others in its genus, has fronds that are thin and delicate. It is the only one of our species with rhizomes that protrude beyond the current year's cluster of leaves. The rhizomes are also pubescent with fine yellow hairs. $\mathrm{C}=8$

Maidenhair Fern

(Adiantum pedatum) is distinct from other ferns in that the lobes of the pinnae cover the sori. It's the only fern in our area that has its rachis divide at the top into the 'C' shape you see here. Note the very dark, almost black rachis! $\mathrm{C}=10$.

is the only grape fern that is twice-pinnate. $\mathrm{C}=4$

Botrychiums: -18 $\underset{\text { (Botrychium campestre) }}{\begin{array}{c}\text { Plains Moonwort }\end{array}}$ is distinctive in that its small tropophore and short sporophore are both atop the long stipe. $\mathrm{C}=0$

Dwarf

 Grape Fern (Botrychium simplex) has its sporophore extended well above the trophophore. $\mathrm{C}=10$ plant. C=10

As Wilhelm and Rericha (2017) point out, determining local species in this genus is problematic.
 footed Quillwort (Isoëtes melanopoda) is similar, but it has leaves that are usually more than 1 mm wide and are blackish at the base. Prefers mucky sand rather than limestone. as its name implies, is found in our region in the dunes of Porter and Lake counties in Indiana. Both of the spikemosses on this page are very tiny! $\mathrm{C}=10$

Glade Quillwort (Isoëtes butleri) grows in wet depressions in shallow, gravelly outwash and loamy clay atop dolomite limestone. The sporangia are at the base of four-chambered hollow leaves. The shiny bright green leaves on this tiny plant are less than 1 mm wide in our region. $\mathrm{C}=10$

Trailing Ground Cedar (Diphasiastrum digitatum) has flattened branches that resemble fingers, hence its Latin name. Notice that the leaves on the ventral (under) side are much shorter than the lateral (side) ones. Larger branches $>2 \mathrm{~mm}$ wide. $\mathrm{C}=4$

One-cone Ground Pine Pine
One-cone Ground Pine (Lycopodium lagopus) has just one strobilus per fertile branch. Leaves of erect branches ascend. $\mathrm{C}=10$

Running Ground Pine (Lycopodium clavatum) has two or more strobili per fertile branch. Leaves of erect branches spread and have long, hairlike tips. $\mathrm{C}=10$

Trailing Ground Cedar

Haberer's Ground Cedar (Diphasiastrum \times habereri) has tips of the underside leaves just short of the one above it. $\mathrm{C}=5$

ventral leaf almost reaching the one above it

Running Ground Cedar

 (Diphasiastrum tristachyum) has ventral leaves that subequal the distal lateral leaves. $\mathrm{C}=8$

Hickey's Ground Pine (Dendrolycopodium hickeyi) has strongly ascending but not appressed stem leaves. $\mathrm{C}=10$

Leaves of
Prickly Ground Pine (Dendrolycopodium dendroideum) are wide-spreading, very prickly to the touch.
$\mathrm{C}=10$

Lesser Bog Clubmoss
(Lycopodiella inundata) like the other lycopodiellas, has single strobili, with internodes of horizontal stems less than 1 mm in diameter. $\mathrm{C}=10$
 (Lycopodiella margueritae) has somewhat spreading leaves.

$$
\mathrm{C}=10
$$

 (Huperzia lucidula) (Huperzia lucidula) (Huperzia lucidula) (Huperzia lucidula) (Huperzia lucidula) (Huperzia lucidula)

Smooth Ground Pine (Dendrolycopodium obscurum) has tightly-appressed stem leaves and a single strobilus per fertile branch. $\mathrm{C}=10$

Marguerite's Clubmoss

Huperzia is the only clubmoss with reflexed leaves. It is also distinct from other clubmosses by annual constrictions along the stem that give it a shaggy look. It can clone itself by shedding its gemmae.

Marsh Horsetail (Equisetum palustre) has the first internode of the branches shorter than the stem sheath, and white papery margins on the teeth. (E. pratense is similar but the midnerves of the teeth are black.) $\mathrm{C}=10$
reddishbrown teeth

Joliet Scouring Rush (Equisetum \times ferrissii) is the alleged hybrid between E. hyemale and E. laevigatum. Only the
Wood Horsetail (Equisetum sylvaticum) is the only one in the world whose branches also branch. The stems eventually turn from brown to green, with the strobilus remaining brown, then withering. $\mathrm{C}=10$
lower portion has black bands on the sheaths. $\mathrm{C}=1$

Dwarf Scouring Rush cross-section

Dwarf Scouring Rush (Equisetum scirpoides) is the smallest of all our horsetails, and grows in tangled clumps. It has not been seen in more than 100 years in our region.
$\mathrm{C}=10$

Mackay's Horsetail (Equisetum \times mackaii) is considered to be a natural hybrid between E. hyemale and E. variegatum. $\mathrm{C}=10$

Nelson's Horsetail (Equisetum \times nelsonii) is the hybrid between E. laevigatum and E. variegatum. Look for its few spicules,

Small Scouring Rush (Equisetum variegatum) is the secondsmallest horsetail in our region. Look for the smooth stem and wide, white margins on the teeth. $\mathrm{C}=10$

KEY TO THE GENERA OF FERNS AND LYCOPHYTES (Adapted from Wilhelm \& Rericha 2017)

1. Stems and branches rush-like, jointed, and appearing leafless. [10] Equisetum
2. Stems and branches neither rush-like nor appearing jointed and leafless.
3. Plants either floating or suspended in water or bulbous at the base with linear leaves.
4. Plants bulbous at the base; leaves linear[8] Isoëtes
5. Plants neither bulbous at the base nor with linear leaves.
Fronds imbricate, not at all lobed; stipe absent. [8] Azolla
Fronds deeply 4-lobed, not imbricate; stipe absent [8] Marsilea
6. Plants neither aquatic nor bulbous at the base with linear leaves.
7. Leaves small, numerous, persistent, often imbricate, 4-6 ranked
8. Plants small, moss-like; leaves ligulate; sporangia with 3 or 4 large spores. [8] Selaginella
9. Plants small and moss-like, the leaves not ligulate; sporangia with numerous tiny spores.
10. Leaves of aerial stems wide-spreading, with most of them deflexed. [9] Huperzia
11. Leaves appressed to wide-spreading, but never deflexed.
12. Strobili erect on leafy peduncles[9] Lycopodiella
13. Strobili sessile or on peduncles with remote or scale-like, much reduced leaves.
14. Ultimate branches flat or quadrangular, to 5 mm wide.[9] Diphasiastrum
15. Ultimate branches terete or compressed, more than 5 mm wide.
Leaves of aerial stems ending in scarious bristly tips.Leaves of aerial stems without scarious bristly tips..9] Dendrolycopodium
16. Leaves (fronds) not numerous, persistent, imbricate or more than 2-ranked.
17. Sporangia borne in a paniculate or spicate inflorescence from near the base of the blade or petiole base of a sterile frond.
18. Sterile leaves simple and entire; fertile blade simple; veins conspicuously anastomosing.[7] Ophioglossum
19. Sterile leaves dissected; fertile blade branched; veins merely forked8] Botrychium
20. Sterile leaves nearly or quite as long as wide
Blades of sterile leaves sessile at the base of the fertile stalk[7] Botrypus
Blades of sterile leaves long-stalked from the base of the plant. [7] Sceptridium
21. Plants without the above combination of characteristics
22. Fertile fronds or fertile portions of fronds unlike the sterile ones, brownish or blackish, without green tissue.
23. Fertile segments with the margins rolled up over the sporangia, appearing like a string of beads or closed segments. Sterile blades mostly simple, pinnatifid [1] Onoclea
Sterile blades fully pinnate-pinnatifid.[5] Matteuccia
13 Fertile segments covered with numerous, exposed, bivalved sporangia
Fertile fronds with some sterile pinnae.[4,5] Osmunda
Fertile fronds without sterile pinnae. [4] Osmundastrum
24. Fertile fronds similar to the sterile fronds, the sporangia borne on the segments of green or greenish blades.
25. Sori marginal, the indusium more or less formed by the revolute margin of the frond or its segments
26. Plants coarse, becoming 0.3 m . or more high [4] Pteridium
27. Plants delicate, less than 0.3 m . high.Fronds reniform in general outline.Fronds not at all reniform in general outline.[7] Adiantum[7] Pellaea
28. Sori not marginal, the indusium absent or present and not formed by the frond margins.
29. Fronds thick and leathery, fully evergreen.
30. Indusium present. 7] Asplenium
31. Indusium absent.
Frond deeply pinnatifid but not pinnate, the pinnae not auriculate [7] Polypodium
Frond fully pinnate, the pinnae notably auriculate at the base. [7] Polystichum
16 Fronds not leathery, at least partially deciduous.
32. Indusium obvious, oriented parallel to the midrib of the pinna. [5] Woodwardia
33. Indusium obscured by spore or if evident then not oriented parallel to the midrib of the pinna.
34. Segments of frond ciliate, the rachis with acicular hairs
Fronds nearly as long as wide. [4] Phegopteris
Fronds clearly longer than wide. [5] Thelypteris
35. Segments of frond eciliate, the rachis without acicular hairs.
36. Cross section of petiole with more than 2 vascular bundles; fronds not membranaceous. [2,3] Dryopteris
37. Cross section of petiole with 2 vascular bundles; fronds membranaceous.
38. Sori not or only scarcely longer than wide.
39. Indusium lacerate, of 4-6 wide segments.[6] Woodsia
40. Indusium absent or at least not lacerate in several segments.Indusium attached at the side of the sorus[6] Cystopteris
Indusium absent. [4] Gymnocarpium21. Sori obviously longer than wide.23. Fronds once-pinnate..[1] Homalosorus
41. Fronds pinnate-pinnatifid to nearly tripinnate.Ultimate segments entire or nearly so..[1] Deparia
Ultimate segments, mostly irregularly serrate. [1] Athyrium

Glossary to Ferns and Lycophytes of the Chicago Region

abaxial ~ Said of a surface that faces away from the axis of the structure to which it is attached. (Usually the top side of a leaf but not always.)
adaxial \sim Said of a surface that faces toward the axis of the structure to which it is attached.
(Usually the underside of a leaf.)
appressed \sim Lying flat against a surface.
aquatic \sim Living out the life cycle in water.
ascending \sim Growing or directed in an upward direction, or at least tending to do so.
attenuate \sim Gradually tapered to a slender tip.
auricle \sim Ear-shaped appendage or lobe.
axis \sim The central part of a longitudinal support, commonly of a stem or inflorescence, on which organs or parts are arranged.
bipinnate \sim Twice pinnately compound.
blade \sim the expanded portion of a foliar or floral organ.
branch \sim A secondary shoot that arises from a stem or the bifurcation of a root into smaller order units.
bulblet \sim A small bulb-like organ, particularly one that proliferates from a leaf axil or sterile flower.
bristle \sim Stiff hair.
calcareous \sim Limy, containing calcium.
C-value \sim Coefficient of Conservatism. Developed by Dr. Gerould S. Wilhelm in 1977, it assigns a 0 -
10 ranking of confidence that the species in question is indicative of the area's remnant (undisturbed by human development) status. A 10 signifies a 100% certainty, a zero means zero certainty, or conversely, 100% certainty that the area has long been disturbed or altered. We usually only see ferns in remnant plant communities.
capitate \sim Head-like; densely clustered.
costa \sim A riblike structure.
cryptogam \sim a plant or other organism that reproduces by spores rather than flowers or seeds dissected \sim Cut or divided into narrow segments.
fen \sim A kind of alkaline wetland, usually with a water source that flows in and out. (Compare to bogs, which are primarily acidic in pH from decaying peat, without those constant influxes.)
fertile frond \sim That part of the fern that carries the spores and sporangia.
fiddlehead \sim The curled-up fronds of the emerging fern.
frond \sim The leaf-like blade of a fern.
gemma \sim a small group of cells that serves as a means of vegetative reproduction in some mosses and liverworts. These cells detach from the parent plant and form a new plant genetically identical to the original.
gland \sim A sessile or stalked structure that can secrete a fluid.
haploid \sim With half the full component of the chromosomal content.
hybrid \sim The offspring of parents of two species, generally from the same genus.
indusium \sim In ferns, the delicate flap or covering connected to the sorus.
internode \sim That portion of the stem other than the node; the distance between two nodes.
lateral \sim Pertaining to the sides, or positions of veins.
ligule \sim A narrow, strap-shaped part of a plant .
locule \sim A clear cavity or space within an organ.
locular \sim Pertaining to a locule.
margin ~ Generally, the edge of a planar organ.
megaspore \sim The larger type of haploid spore (when two sizes are present) that gives rise to the female gametophyte; see microspore.
$m e s i c \sim$ Describing a microclimate or plant community in which there is a moderate amount of moisture.
microspore \sim Haploid spore that gives rise to the male gametophyte, generally smaller than the megaspore.
midrib/midvein \sim Midnerve; the central or principal vein of a foliar or bracteal organ.
nerve ~ vein
netted (as in veins) ~ giving the appearance of an open mesh or fabric.
node \sim The point along a stem that gives rise to leaves, branches, or inflorescences.
panne \sim A flat, often seasonally-inundated wetland behind a series of foredunes or dunes.
perpendicular \sim At an angle of 90° to a given line, plane, or surface.
petiole \sim The stalk of a leaf.
pinna (pl : pinnae) \sim One of the principal divisions in a pinnate or pinnately compound leaf or frond.
pinnate \sim In reference to a foliar structure that is compound or deeply divided, the principal divisions arranged along each side of a common axis.
pinnatifid \sim Incompletely pinnate, the clefts between the segments not reaching the axis.
pinnule \sim One of the principal divisions of a pinna.
rachis (pl: rachides) \sim The principal axis of an inflorescence or compound leaf.
remnant \sim Usually referring to a natural area that has not been substantially altered by development.
rhizome \sim An underground stem with nodes and short to elongate internodes.
scale \sim Generally a thin, sometimes scarious, much reduced leaf, bract, bractlet, or perianth segment. segment \sim One of the units of a perianth or calyx, or of a leaf that is divided but not fully compound. sheath \sim A tubular structure effected by the coming together of leaf margins around the stem. sorus (plural: sori) ~ A cluster or discrete aggregation of sporangia.
spicule \sim A hard point or protuberance, typically on a leaf margin, but in Equisetum, along the stems.
sporangium (plural: sporangia) ~Spore-producing structure.
spore \sim An asexual, typically 1-locular, haploid cell.
sporophyll \sim a leaf that bears sporangia; more generally used in reference to the reproductive structure of ferns in the Ophioglossaceae family (Ophioglossum, Botrychium, Botrupus, Sceptridium) where it appears that the fertile frond arises from a juncture of the sterile frond and the stipe.
sterile \sim Incapable of reproducing sexually; also in reference to soil that is poor in nutrients.
stipe (adj.: stipitate) ~ A small connecting stalk; sometimes a small stalk that elevates the pistil or
flower above the receptacle or pedicel; the "petiole" of a fern frond.
strobilus (pl.: strobili) An inflorescence, often hard or woody and characterized by a series of imbricated scales; a cone.
subequal \sim Nearly, but not exactly, equal in size.
sulcus \sim Lengthwise groove.
tooth $\sim \mathrm{A}$ sharp process at the edge of a tissue (pl. teeth).
trophophyll ~a sterile frond; more generally used in reference to ferns in the Ophioglossaceae family (Ophioglossum, Botrychium, Botrupus, Sceptridium) where it appears that the sterile frond arises from a juncture of the fertile frond and the stipe.
tripinnate \sim Having leaflets that are subdivided three times, in a pinnate arrangement.
triradiate \sim Having three rays or radiating parts.
ultimate segment \sim The segment at the very end of a stem, leaf, or leaflet.
vascular \sim In reference to veins or conducting vessels.
vein \sim A thread of fibro-vascular tissue in a leaf or other organ.
venation \sim The arrangement or nature of the veins.
$v e n t r a l ~ \sim$ In reference to the inner or adaxial face of an organ; opposite of dorsal.

